
YETL

Yet Another ETL

Framework

On-Board Datafeed

These are the outline steps to on-board a new datafeed:

1. Load Landing Data

2. Create Yetl Project

3. Create Table Metadata

4. Create Pipeline Metadata

5. Create Spark Schema

6. Develop & Test Pipeline

7. Deploy Product

Load Landing Data

This project is about loading data from cloud blob into databricks deltalake tables. Data would normally be

orchestrated into landing using some other tool for example Azure Data Factory or AWS Data Pipeline or some other

tool that specialises in securely wholesale copying datasets into the cloud or between cloud services.

You may already have this orchestration in place in which case the data will in your landing blob location already or

you mock it by getting a sample of data and manually copying it into the location it will be landed to.

For test driven development you can include a small vanilla hand crafted data set into the project itself that can

automatically be copied into place from the workspace files as way of creating repeatable end to end integration

tests that can staged, executed and torn down with simple commands.

Create Yetl Project

Create a directory, setup virtual python environment and install yetl.

Create yetl project scaffolding.

Create Table Metadata

Fill out the spreadsheet template with landing and deltalake architecture that you want to load. The excel file has to

be in a specific format other the import will not work. Use this example as a template

NOTE:

mkdir my_project

cd my_project

python -m venv venv

source venv/bin/activate

pip install yetl-framework

python -m yetl init my_project

https://github.com/sibytes/databricks-patterns/blob/main/header_footer/pipelines/tables.xlsx

Lists are entered using character return between items in an Excel cell.

Dicts are entered using a : between key value pairs and character returns betweenitmes in an Excel cell.

merge_column.column required type description

stage y [audit_control,

landing, raw, base,

curated]

The architecural layer of the data lake house

you want the DB in

table_type y [read, delta_lake] What type of table to create, read is a

spark.read, delta_lake is a delta table.

catalog n str name of the catalog. Although you can set it

here in the condif the api allows passing it

as a parameter also.

database y str name of the database

table y str name of the table

sql n [y, n] whether or not to include a default link to a

SQL ddl file for creating the table.

id n str, List[str] a column name or list of column names that

is the primary key of the table.

depends_on n List[str] list of other tables that the table is loaded

from thus creating a mapping. It required the

yetl index which is stage.database.table

you can also use stage.database.* for

exmaple if you want to reference all the

tables in a database.

deltalake.delta_properties n Dict[str,str] key value pairs of databricks delta properties

deltalake.identity n [y, n] whether or not to include an indentity on the

table when a delta table is created implicitly

deltalake.partition_by n str, List[str] column or list of columns to

partition the table by

deltalake.delta_constraints n Dict[str,str] key value pairs of delta table constraints

deltalake.z_order_by n str,

List[str]

column or list of columns to z-order the table by

deltalake.vacuum n int vaccum threshold in days for a delta table

warning_thresholds.invalid_ratio n float ratio of invalid to valid rows threshold that can be

used to raise a warning

warning_thresholds.invalid_rows n int number of invalid rows threshold that can be used

to raise a warning

warning_thresholds.max_rows n int max number of rows thresholds that can be used

to raise a warning

warning_thresholds.mins_rows n int min number of rows thresholds that can be used

to raise a warning

error_thresholds.invalid_ratio n float ratio of invalid to valid rows threshold that can be

used to raise an exception

error_thresholds.invalid_rows n int number of invalid rows threshold that can be used

to raise an exception

error_thresholds.max_rows n int max number of rows thresholds that can be used

to raise an exception

error_thresholds.mins_rows n int min number of rows thresholds that can be used

to raise an exception

custom_properties.process_group n any customer properties can be what ever you want.

Yetl is smart enough to build them into the API

custom_properties.rentention_days n any

custom_properties.anything_you_want n any

Create the tables.yaml file by executing:

python -m yetl import-tables ./my_project/pipelines/tables.xlsx

./my_project/pipelines/tables.yaml

Create Pipeline Metadata

In the ./my_project/pipelines folder create a yaml file that contains the metadata specifying how to load the

tables defined in ./my_project/pipelines/tables.yaml . You can call them whatever you want and you can create

more than one. Perhaps one that batch loads and another that event stream loads. The yetl api will allow you to

parameterise which pipeline metadata you want to use. For the purpose of these docs we will refere to this pipeline

as my_pipeline.yaml .

The pipeline file my_pipeline.yaml has a relative file reference to tables.yaml and the therefore yetl knows what

files to use to stitch the table metadata together.

Please see the pipeline reference documentation for details. Here is an example.

Create Spark Schema

Once the yetl metadata is in place we can start using the API. The 1st task is to create the landing schema that need

to load the data. This can be done using a simple notebook on databricks.

Using databricks repo's you can clone your project into databricks.

This must be in it's own cell:

Executing the following code will load the files and save the spark schema into the `./my_project/schema' directory

in yaml format making it easy to review and adjust if you wish. There's no reason to move the files anywhere else

once created, yetl uses this location as a schema repo. The files will named after the tables making it intuitive to

understand what the schema's are and how the map.

The ad works example project shows this notebook approach working very well creating the schema over a relatively

large number of tables.

%pip install yetl-framework==3.0.0

https://github.com/sibytes/databricks-patterns/blob/main/header_footer/pipelines/autoloader.yaml
https://github.com/sibytes/databricks-patterns/tree/main/ad_works
https://github.com/sibytes/databricks-patterns/blob/main/ad_works/databricks/notebooks/bronze/create_schema.py
https://github.com/sibytes/databricks-patterns/tree/main/ad_works/schema
https://github.com/sibytes/databricks-patterns/blob/main/ad_works/pipelines/tables.yaml

As you can see using this approach can also be used for creating tables in a pipeline step prior to any load pipeline

using the create_table parameter. It will either create explicity defined tables using SQL DML if you've configured

any or just create register empty delta tables with no schema. This may be required if you have multiple sources

flowing into a single table (fan-in) to avoid transaction isolation errors creating the tables the 1st time that the

pipeline runs.

from yetl import (

Config, Read, DeltaLake, Timeslice

)

import yaml, os

def create_schema(

source:Read,

destination:DeltaLake

):

options = source.options

options["inferSchema"] = True

options["enforceSchema"] = False

df = (

spark.read

.format(source.format)

.options(**options)

.load(source.path)

)

schema = yaml.safe_load(df.schema.json())

schema = yaml.safe_dump(schema, indent=4)

with open(source.spark_schema, "w", encoding="utf-8") as f:

f.write(schema)

project = "my_project"

pipeline = "my_pipeline"

Timeslice may be required depending how you've configured you landing area.

here we just using a single period to define the schema

Timeslice(year="*", month="*", day="*") would use all the data

you have which could be very inefficient.

This exmaple uses the data in the landing partition of 2023-01-01

how that is mapped to file and directories the my_pipeline definition

config = Config(

project=project,

pipeline=pipeline,

timeslice=Timeslice(year=2023, month=1, day=1)

)

tables = config.tables.lookup_table(

stage=StageType.raw,

first_match=False

)

for t in tables:

table_mapping = config.get_table_mapping(

t.stage, t.table, t.database, create_table=False

)

create_schema(table_mapping.source, table_mapping.destination)

Develop & Test Pipeline

TODO

Deploy Product

TODO

Yet Another ETL Framework

