
YETL

Yet Another ETL

Framework

Table Configuration

The table configuration defines that is loaded in a data pipeline.

The table metadata is the most difficult and time consuming metadata to curate. Therefore yetl provides a command

line tool to convert an excel curated definition of metadata into the required yaml format. Curating this kind of detail

for large numbers of tables is much easier to do in an Excel document due to it's excellent features.

Example

A solution lands 3 files:

customer_details_1

customer_details_2

customer_preferences

The files are loaded into raw from landing with a deltalake table for each file.

Those tables are then loaded into base tables. customer_details_1 and customer_details_2 are unioned together

and loaded into a customer table. So the base tables are:

customers

customer_perferences

Each file has a header and footer with some audit data we load this with some other etl audit data into deltalake

audit tables:

header_footer

raw_audit

base_audit

Here is the tables.yaml metadata that describes the stages, databases and tables:

yaml-language-server: $schema=./json_schema/sibytes_yetl_tables_schema.json

version: 3.0.0

audit_control:

delta_lake:

yetl_control_header_footer_uc:

catalog: development

base_audit:

depends_on:

- raw.yetl_raw_header_footer_uc.*

sql: ../sql/{{database}}/{{table}}.sql

vacuum: 168

header_footer:

depends_on:

- raw.yetl_raw_header_footer_uc.*

sql: ../sql/{{database}}/{{table}}.sql

vacuum: 168

raw_audit:

depends_on:

- raw.yetl_raw_header_footer_uc.*

- audit_control.yetl_control_header_footer_uc.header_footer

sql: ../sql/{{database}}/{{table}}.sql

vacuum: 168

landing:

read:

yetl_landing_header_footer_uc:

catalog: development

customer_details_1: null

customer_details_2: null

customer_preferences: null

raw:

delta_lake:

yetl_raw_header_footer_uc:

catalog: development

customer_details_1:

custom_properties:

process_group: 1

rentention_days: 365

depends_on:

- landing.yetl_landing_header_footer_uc.customer_details_1

exception_thresholds:

invalid_rows: 2

min_rows: 1

id: id

vacuum: 168

z_order_by: _load_date

customer_details_2:

custom_properties:

process_group: 1

rentention_days: 365

depends_on:

- landing.yetl_landing_header_footer_uc.customer_details_2

exception_thresholds:

invalid_rows: 2

min_rows: 1

id: id

vacuum: 168

z_order_by: _load_date

customer_preferences:

custom_properties:

Specification

If you use the yetl cli to create a project using python -m yetl init <my_project> then the json validation

schema for the config files including table the table config will be created at ./<my_project>/piplines/json-

schemas/sibytes_yetl_tables_schema.json . Using vscode and the RedHat yaml extension you can add the

following json schema reference to ./<my_project>/piplines/tables.yml to provide live validation and

intellisense:

This reference describes the required format of the tables.yaml configuration.

process_group: 1 rentention_days: 365 depends_on: -

landing.yetl_landing_header_footer_uc.customer_preferences exception_thresholds:

invalid_rows: 2 min_rows: 1 id: id vacuum: 168 z_order_by:

_load_datebase: delta_lake: yetl_base_header_footer_uc: catalog: development

customer_details_1: custom_properties: process_group: 1 rentention_days:

365 depends_on: - raw.yetl_raw_header_footer_uc.customer_details_1

exception_thresholds: invalid_rows: 0 min_rows: 1 id: id vacuum:

168 z_order_by: _load_date customer_details_2: custom_properties:

process_group: 1 rentention_days: 365 depends_on: -

raw.yetl_raw_header_footer_uc.customer_details_2 exception_thresholds:

invalid_rows: 0 min_rows: 1 id: id vacuum: 168 z_order_by:

_load_date customer_preferences: custom_properties: process_group: 1

rentention_days: 365 depends_on: -

raw.yetl_raw_header_footer_uc.customer_preferences exception_thresholds:

invalid_rows: 0 min_rows: 1 id: id vacuum: 168 z_order_by:

_load_date customers: custom_properties: process_group: 1

rentention_days: 365 depends_on: - raw.yetl_raw_header_footer_uc.*

exception_thresholds: invalid_rows: 0 min_rows: 1 id: id vacuum:

168 z_order_by: _load_date

yaml-language-server: $schema=./json_schema/sibytes_yetl_tables_schema.json

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml

version

Version is the version number of yetl that the metadata is compatible with. If the major and minor version are not the

same as the yetl python libary that you're using to load the metadata then an error will be raised. This is to ensure the

metadata is compatible with the version of yetl that you're using.

Example:

Stage

The stage of the datalake house architecture. Yetl supports the following stage s:

audit-control - define tables for holding etl data and audit logs

version: major.minor.patch

<stage:Stage>:

<table_type:TableType>:

delta_properties:

<property_name>: str

<database_name:string>:

catalog: str|null

<table_name:str>:

id: str|list[str]|null

depends_on: index|list[index]|null

delta_properties:

<property_name>: str

delta_constraints:

<constraint_name>: str

custom_properties:

<property_names>: str

z_order_by: str|list[str]|null

partition_by: str|list[str]|null

cluster_by: str|list[str]|null

vacuum: int|null

sql: path|null

warning_thresholds:

invalid_ratio: float

invalid_rows: int

max_rows: int

min_rows: int

exception_thresholds:

invalid_ratio: float

invalid_rows: int

max_rows: int

min_rows: int

<table_name:str>:

table details

...

<table_name:str>:

table details

...

version: 3.0.0

landing - define landing object store where files are copied into you your cloud storage before they uploaded

into the delta lakehouse

raw - define databases and tables for the bronze layer of the datalake. These will typically be deltalake tables

loading with landing data with nothing more than schema validation applied

base - define databases and deltalake tables for the silver layer of the datalake. These tables will hold data

loaded from raw with data quality and cleansing applied.

curated - define databases and deltalake tables for the gold layer of the datalake. These tables will hold the

results of heavy transforms that integrate and aggregate data using complex business transformations

specifically for business requirements.

At least 2 stages must defined:

landing

raw

These stages are optional:

audit_control

base

curated

Example:

delta_properties

Deltalake properties is an object of key-value pairs that describes the deltalake properties. They can be defined at the

table type level or the table level. The lowest level of granularity takes precedence over the higher levels. So you can

define properties at a high level but override them at the table level if a table has specific properties that need to be

defined.

Example:

delta_constraints

audit_control:

delta_lake:

...

landing:

read:

...

raw:

delta_lake:

delta_properties:

delta.appendOnly: true

delta.autoOptimize.autoCompact: true

delta.autoOptimize.optimizeWrite: true

delta.enableChangeDataFeed: false

Deltalake properties is an object of key-value pairs that describes the deltalake constraints. The key is the constraint

name and the value is the sql constraint.

The constraints are added when yetl creates the tables.

TableType

Table type is the type of table that is used. Yetl supports the following table_type s:

read - These are tables that are read using the spark read data api. Typically these are files with various

formats. These types of tables are typically defined on the landing stage of the datalake.

delta_lake - These are deltalake tables that written to and read from during a pipeline load.

Example:

index

Index is a string formatted specifically to describe a table index. In the Yetl api the tables are index and the index can

be used to quickly find and define dependencies.

The index takes the following form:

It supports a wild card form for defining or finding a collection of tables e.g.

stage.*.* - return/configure all the tables in a stage

stage.database.* - return/configure all the tables in a database

Example:

delta_properties:

dateWithinRange: "(birthDate > '1900-01-01')"

validIds: "(id > 1 and id < 99999999)"

audit_control:

delta_lake:

...

landing:

read:

...

raw:

delta_lake:

stage.database.table

audit_control:

delta_lake:

yetl_control_header_footer:

base_audit:

this table depends on all the tables in the raw database called yetl_raw_header_footer

depends_on:

- raw.yetl_raw_header_footer.*

id

id is a string or list of strings that is the columns name or names of the table uniqie identifier.

z_order_by

z_order_by is a string or list of strings that is the columns name or names to z_order the table by.

partition_by

partition_by is a string or list of strings that is the columns name or names to partition the table by.

sql

sql is relative path to the directory that holds a file container the explicit SQL to create the table. Note that jinja

varaiable can be used for database and table thus defining that the sql directory is structured by database and table.

Example:

thresholds

Thresholds allow to define ETL audit metrics for each table. There are 2 properties for this:

warning_thresholds - used to define metrics that if exceeded raises a warning

exception_thresholds - usde to define metrics that if exceeded raises an exception

This is just metadata so how you use it and handle this metadata is entirely down to the developmer however. The

pipeline code it self is used to calculate what these values are and compare them to the these thresholds and take

appropriate action.

Each threshold type supports the following metrics:

invalid_ratio - number of invalid records divided by the total number of records

invalid_rows - number of invalid records

min_rows - minimum number of rows

max_rows - maximum number of rows

Example:

sql: ../sql/{{database}}/{{table}}.sql

vacuum

vacuum is the day threshold over which to apply the vacuum statement.

custom_properties

custom_properties is object of key value pairs for anything that you want to define that's not in the specification.

This feature allows yetl to be very flexible for any additional requirement that you may have.

Example:

warning_thresholds:

if more than 10% of the rows are invalid then raise a warning.

invalid_ratio: 0

invalid_rows: 0

max_rows: null

if there's less than 1000 records raise a warning

min_rows: 1000

exception_thresholds:

if more than 50% of the rows are invalid then raise an exception

invalid_ratio: 0.5

invalid_rows: null

max_rows: null

if there's less than 1 record raise an exception

min_rows: 1

custom_properties:

define an affinity group to process tables on the same job clusters

process_group: 1

define the days to retain the data for after which it is archived or deleted

rentention_days: 365

Yet Another ETL Framework

